5.9 ABLOGIX IO Server

5.9.1 Introduction

ABLogix IO server is used to communicate with Allen Bradley Logix Series PLCs on the Ethernet link or on the Serial link (in DF1 protocol).

- It allows the eWON to poll ABLOGIX PLCs to read data.
- It allows the eWON to act as EIP-DF1 gateway for remote maintenance of the ABLOGIX PLCs.
- It allows the eWON to poll DH+ device using ControlLogix gateway.

eWON only allows DF1 communication with devices directly connected to the eWON Serial link (the ABLOGIX PLC may not be located behind another PLC connected on the DF1 serial link acting itself as gateway).

note: Please check in the “Rockwell compatibility matrix” on page 192 if your device is supported.

5.9.2 Setup

![Figure 82: ABLOGIX IO server setup window](image-url)
5.9.2.1 Communication Setup

In the current implementation, the serial link configuration may be done using the DF1 IO Server configuration page or the AB LOGIX IO server page. The same settings apply for both IO servers (DF1 and ABLogix).

Note: In the config.txt file the serial link parameters are defined in the DF1 IO server entry.

<table>
<thead>
<tr>
<th>Baud Rate</th>
<th>Select the Baudrate from 1200 to 38400 Bauds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parity</td>
<td>The parity to apply: none / odd / even</td>
</tr>
<tr>
<td>Stop Bit(s)</td>
<td>Number of stop bits</td>
</tr>
<tr>
<td>Frame Error Detection</td>
<td>Cyclic Redundancy Check (CRC) or Block Check Character (BCC)</td>
</tr>
<tr>
<td>HW mode</td>
<td>Full Duplex no handshaking or Half duplex</td>
</tr>
<tr>
<td>Master Response Timeout</td>
<td>Maximum time the eWON will wait for a valid message from the DF1 master. This value can be critical for a correct operation, depending on the responsiveness of the master. A value of 1000 should be selected to guarantee correct operation</td>
</tr>
<tr>
<td>Rx message timeout (MSEC)</td>
<td>Maximum time between a request is posted and the response is received</td>
</tr>
<tr>
<td>Tx message timeout (MSEC)</td>
<td>Maximum time for a request to be sent</td>
</tr>
<tr>
<td>eWON DF1 address</td>
<td>Device Address of eWON on DF1 link When eWON will act as a DF1 slave, it will respond to 2 consecutive link addresses; doing this improves the throughput of data across the eWON when acting as a gateway. (eWON DF1 address and eWON DF1 address +1)</td>
</tr>
<tr>
<td>Destination DF1 address</td>
<td>Device Address of Destination on DF1 link when EIP is used</td>
</tr>
</tbody>
</table>

Table 87: ABLOGIX-DF1 communication setup controls

5.9.2.2 Topic configuration

Three topics can be used for the IO Server. These topics are used to give a common property, to a group of Tags, like:

- Enable/Disable
- Global Device Address
- Poll rate

<table>
<thead>
<tr>
<th>Topic configuration item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic enabled</td>
<td>Enables or disables polling of all the Tags in the topic</td>
</tr>
<tr>
<td>Global Device Address</td>
<td>The Global Device Address is a global parameter for all the Tags of the topic. See below for the Device Address syntax. If an address is specified here, it will replace (overload) the address defined Tag by Tag</td>
</tr>
<tr>
<td>Poll rate</td>
<td>Defines the refresh rate (in mSec) of the Tag name. In a complex application, we can imagine that some Tag name must be refreshed every second – typically for digital input - and other every minute – typically: temperature-</td>
</tr>
</tbody>
</table>

Table 88: ABLOGIX topics configuration setup

5.9.2.2.1 ABLogix : DF1 serial link

The Global Device Address has the following syntax: Address

- Address = DF1 Node ID of the device (i.e.: 5)

Figure 83: ABLogix : DF1 address example
5.9.2.2 **ABLogix : EIP Ethernet link**

The Global Device Address has the following syntax: `IP Address, Port, Link`

- **IP Address** = address on your Ethernet network (i.e.: 10.0.30.7)
- **Port** = value from 1 to 3 representing: 1 = Backplane, 2 = Channel A, 3 = Channel B
- **Link** could be:
 - Slot: representing the Slot on the Backplane (for example: 0=CPU)
 - Node ID: value from 0 to 99 (for ControlNet)
 - IP address

![Figure 84: ABLogix : EIP address example](image)

REM: In the case of using a ControlLogix as Gateway, the Device Address could be like following: `IP Address, Port, Link[, Port, Link], Port, Link, ...

5.9.2.2.3 **DH+ polling using ControlLogix gateway**

This feature allows the eWON to poll PLC tags located on a DH+ network, behind a controllogix equipped with one or more DHRIIO cards. Polling is done using eWON EIP protocol.

The ABLOGIX IO server is used to access the “LOGIX” PLC family.

The DF1 IO server is used to access the “SLC500” PLC family (See “DH+ polling using ControlLogix gateway” on page 97).

The general syntax `IP address, Port, Link` is still applicable. There is no specific character to indicate the DH+ channel (“2” or “3” should be used).

Example: To reach a PLC5 (with CPU in slot 0) with DH+ node Id 3 using channel A of a DHRIIO card at slot 9 of a controllogix at IP address 10.0.30.21.

```
Topic A Destination = SLC500-10.0.30.21,1,9,2,3,1,0
```

- 10.0.30.21 = IP address of the ControlLogix
- 1 = BackPlane
- 9 = Slot 9 (COM card)
- 2 = Channel A (of the Card present in Slot 9)
- 3 = NodeID of the PLC5 (in the COM network)
- 1 = BackPlane
- 0 = slot (of the CPU in our example)

5.9.3 **Tag name convention**

<table>
<thead>
<tr>
<th>IO Server Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO server Name</td>
</tr>
<tr>
<td>Topic name</td>
</tr>
<tr>
<td>Item Name</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

| Table 89: ABLOGIX IO server Tag name convention table |

The Item Name can contain the PLC address where the value is polled, or not. If address is also specified at topic level, the address specified at Tag level will be ignored.
5.9.3.1 ValueName

ValueName follows the syntax below:

[PROGRAM:ProgName.]SymbolicTagName

- **ProgName** is the name of the program where the Tag is.
 - If no ProgName, the Tag is in the global scope (tag is controller type)
- **SymbolicTagName**:
 - Symbol of the tag.
 - Only following atomic type are supported: BOOL, SINT, INT, FLOAT, DINT (*), BIT ARRAY
 - Bit selection with <SymbolicTagName>/bit
 - where bit is the bit number (from 0 to 31)
 - ex: controlbit/4 read the bit 4 of the controlbit register
 - TIMER, CONTROL, COUNTER predefined types with <SymbolicTagName>.acc (or ctl or pre)
 - ex: MyVar.acc read the counter of MyVar
 - Element of a table
 - <Symbolic_1>[idx_1],<Symbolic_2>[idx_2],<Symbolic_3>[idx_3],<Symbol>
 - With maximum 3 index.
 - ex: table1[2].subtable[6].element read data named 'element' on the index 6 of the 'sub table' from the index 2 of the 'table1'
 - Element of a structure
 - <Symbolic_1>.<Symbolic_2>
 - ex: CounterObj.init read the 'init' part of the structure 'CounterObj'
 - (*) Important: See “Tags are stored as Float” on page 62

- **Status register**:

 The STATUS Tag is a special Tag that returns information about the current state of the communication for a given device. As for other Tags, the status Tag ValueName is composed of:

 Status,ComPortNum

 - You can define a status Tag for each COM port used.
 - If you use the status address, the Tag must be configured as analog.

<table>
<thead>
<tr>
<th>Status Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Communication not initialized. Status UNKNOWN. If no Tag is polled on that device address, the communication status is unknown.</td>
</tr>
<tr>
<td>1</td>
<td>Communication OK.</td>
</tr>
<tr>
<td>2</td>
<td>Communication NOT OK.</td>
</tr>
</tbody>
</table>

Table 90: Tag status meaning